Перейти к основному содержанию

Тематический план

  • Barriers and Opportunities for 2-Year and 4-Year STEM Degrees Systemic Change to Support Students_ Diverse Pathways (2016)

    Policy makers agree that the nation’s economic and social development require investment in the education of everyone. The level of that education and the skills required in 21st century America differ widely from those needed in the country inhabited and built by our forebears. The pace of change is different, as are the demographics of the U.S. population. While education in general is critical to the nation’s future, it is widely recognized that the specific skills often acquired in the study of science, technology, engineering, and mathematics (STEM) fields are increasingly needed across the economy, and it is those fields that we have explored in depth in this report. The decision to focus on specific fields was partly based on practical considerations. The scope of the study needed to be bounded so that a detailed report could be produced, and the national focus on STEM education and jobs led to the need to clarify what research can contribute to the ongoing policy debates. However, while the committee acknowledges the importance of STEM to the nation’s economic competitiveness, we also recognize the importance of the pursuit of all knowledge, including the arts and humanities, and how these non-STEM areas also support the growth of ideas and solutions needed to address global challenges. We also recognize that those holding STEM degrees have higher salaries and lower levels of unemployment, and there is a smaller pay gap between men and women in many STEM fields than in other fields. At the same time, we note that most people with STEM degrees are not working in STEM fields.

    We do not tie our discussion to questions of the adequacy, oversupply, or surfeit of STEM degree holders. We note that those with an interest should be afforded an opportunity for success. STEM degrees not only provide credentials that attest to mastery of knowledge in specific STEM fields, but also indicate that the individuals likely possess skills that are used and valued in a variety of sectors of the economy. Beyond the interest in providing knowledge and skills that will be valuable in the economy is the value of having such knowledge and skills to support responsible citizenship in a pluralistic democracy. Study of STEM fields can enrich individuals as they engage in multiple roles across society. Our forebears lived in a time when there were different norms as to the role of women and minorities in the community and the economy. Today, women are the majority of students in higher education. The shifting demographic means that the nation has to develop talent from across society, including among those who may not in the past have been afforded a quality education or those for whom society has not had expectations for success in STEM fields. As we have explored the research to inform the question of STEM degree completion, we have tried to look to the extent possible at various groups in the population, especially at groups who, history shows, may not have been enabled to contribute to the talent pool for STEM. We know, for example, that in addition to women and underrepresented minorities, persons with disabilities and first-generation college students have faced barriers. Unfortunately, we have not always had robust data or relevant research to be able to outline the nature of those barriers or the opportunities to address them. To respond to this lack of guidance, we can only advocate that reforms be learner centered and that the system be viewed from the perspective of the learners.