Перейти к основному содержанию

Тематический план

  • Monitoring Progress Toward Successful K-12 STEM Education A Nation Advancing_ (2013)

    Recent attention to K-12 education in science, technology, engineering, and mathematics (the disciplines collectively referred to as STEM) has revealed challenges in students’ performance and persistence, particularly for groups that are underrepresented in the STEM fields (Schmidt, 2011; President’s Council of Advisors on Science and Technology, 2010; Lowell et al., 2009; Hill et al., 2008; Higher Education Research Institute, 2010). Although these challenges are daunting, recent education policy developments are creating an unprecedented opportunity to address them. 

    For example, educational reforms across the country are emphasizing more rigorous common state standards and assessments for all students; increases in school and teacher effectiveness; innovations in teacher preparation and professional development; and new approaches to holding districts, schools, and teachers accountable for results. In addition, the new Common Core State Standards for Mathematics (see National Governors Association and Council of Chief State School Officers, 2010) and A Framework for K-12 Science Education (National Research Council, 2012)1 emphasize conceptual understanding of key ideas in each discipline, greater coherence across grade levels, and the practices of science and mathematics. Together, these changes have the potential to engage students in ways that better prepare them for postsecondary study and STEM careers, and thus eventually, for addressing current and future societal challenges and participating in an increasingly global and technologically driven society. The political will and momentum gathering behind these efforts offer an opportunity to realize improvements to K-12 science and mathematics education that have so far remained elusive. 

    The success of these efforts depends on many factors, including students’ equitable access to challenging learning opportunities and instructional materials, teachers’ capacity to use those opportunities and materials well, and policies and structures that support effective educational practices. In turn, making informed decisions about improvements to education in STEM requires research and data about the content and quality of the curriculum, teachers’ content knowledge, and the use of instructional practices that have been shown to improve outcomes. However, large-scale data are not available in a readily accessible form, mostly because state and federal data systems provide information about schools (personnel, organization, and enrollment) rather than schooling (key elements of the learning process).